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Abstract 
 
The goal in developing a robust parallelization tool is that it is easy to use, it requires minimal modifications to the 
original serial code, it is extensible to a wide variety of applications, and that it provide good portable performance.  
A directive-based parallelization tool is described called the Parallel Pre-processor (PPP) that meets most of these 
goals.  The user inserts directives, in the form of comments, into existing Fortran code.  PPP translates the code and 
directives into a parallel version that runs efficiently on shared and distributed memory high-performance computing 
platforms including: SGI Origin, IBM SP2, Cray T3E, SUN, Alpha and Intel Clusters.  Twenty directives are 
available to support operations including array re-declarations, inter-process communications, loop transformations, 
and parallel I/O operations.   PPP also provides support for incremental parallelization and parallel debugging. 
 
Keywords:  Directive-based parallelization, Weather and ocean models, parallel compiler, Fortran source to source 
translator, distributed memory computers 
 
1.  Introduction 
 
Distributed memory computers (DMCs) are increasingly used to solve scientific problems 
because they offer superior price performance over their shared-memory counterparts.  However, 
the biggest impediment toward the use of distributed memory computers is the lack of good high 
level programming models that run efficiently and are portable.  Ideally these programming 
models should provide efficient execution of the application, access to simple high-level 
programming constructs, and be minimally invasive.  Several programming models are supported 
by computer vendors and  widely used by the scientific community.  Currently, HPF, MPI and 
OpenMP are the most popular but none has proven effective at being sufficiently high level and 
offering scalable, portable performance. 
 
High Performance Fortran (HPF) was developed to address the need to automatically parallelize 
Fortran codes.  Despite support by parallel computer vendors and scientific institutions, it has 
largely failed to live up to the promise of high-performance and ease-of-use.  The most basic 
short-coming of HPF is in the compiler’s inability to determine the optimal location of inter-
process communications efficiently.  Code restructuring and the insertion of additional HPF 
directives can help the compiler do a better job, but this often requires additional effort by the 
programmer and performance is often significantly less than hand coded solutions.  Additional 
research at Rice University has been done to create a distributed memory HPF (dHPF) to address 
the performance shortcomings and they have achieved some success [6].  However, performance 
still lags MPI-based hand coded solutions by at least 15 percent (often much more), and code 
restructuring is often required. 
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Since good performance is critical in most scientific applications, users have largely rejected 
HPF as a viable programming model.  In order to achieve good results on DMCs, message 
passing libraries such as MPI are used. While the performance and scalability of parallel codes 
using message-passing libraries such as MPI can be quite good, they are relatively low-level and 
can require the programmer to expend a significant amount of effort to parallelize their code.  
Further, the resulting code may differ substantially from the original serial version and code 
restructuring is often desirable or necessary. 
 
Another programming model commonly used to parallelize Fortran codes is OpenMP.  OpenMP 
is a standard set of directives, designed in a collaboration between computer vendors and 
applications users, that has become widely used in the scientific community.  OpenMP can be 
used to quickly produce parallel code, with minimal impact on the serial version.  However, 
OpenMP is only available for shared memory computers.  To get around this restriction, software 
developers have achieved limited success combining OpenMP (shared memory parallelism) with 
MPI (distributed memory parallelism) on hybrid DMCs.  In either case however, obtaining good 
scalable performance often requires as much effort as when MPI is used directly.   
 
These programming environments target Fortran codes since, despite its drawbacks, it remains 
the most popular programming language for scientific applications.  In addition to these 
programming models, application specific frameworks have also emerged as a viable alternative 
to traditional language based approaches.  In the atmospheric and ocean modeling community for 
example, the Earth System Modeling Framework (ESMF) [7] and the Program for Integrated 
Earth System Modeling [15] projects have begun recently with a goal of standardizing the 
interfaces between the framework and the applications that use them.  Standard interfaces allow 
scientific codes to be more easily moved between models when they are built using the same 
framework.  In addition to providing traditional library-based low-level communications 
routines, these approaches plan to support coupling of models and the robust handling of model 
grids that are required by climate applications.  These tools are slated to be available in 2005, but 
at this time, it is unclear the extent to which source code changes will be required, or what the 
performance impacts will be in using them. 
 
Despite the performance problems of HPF, and the limitations of OpenMP however, high-level 
directive-based parallelization remains a viable and attractive programming model for distributed 
memory.  Directives offer a high level way to provide parallelization details to the compiler.  
Directives are lower level than modeling frameworks and thus permit flexibility and extensibility 
in handling wide ranging applications, yet are sufficiently high level as to allow common parallel 
operations to be encapsulated into simple high level directives. 
 
Using this as a template to guide our development, we have built a compiler called the Parallel 
Pre-Processor (PPP) to translate Fortran source code and high level parallelization directives 
inserted by the programmer, into efficient parallel code.  PPP directives provide similar 
functionality to HPF; however, in contrast to HPF where the placement of communications is 
determined by the compiler, PPP requires the programmer to determine the location of 
communications explicitly. 



 
PPP has been used to parallelize many atmospheric and oceanic models including the Global 
Forecast System (GFS) [12] and the Typhoon Forecast System (TFS) [5] for the Central Weather 
Bureau in Taiwan, the Regional Ocean Modeling System (ROMS) [10], the Hybrid Coordinate 
Ocean Model (HYCOM) [2], the National Centers for Environmental Prediction (NCEP) Eta 
model [14], the high resolution limited area Quasi Non-hydrostatic model (QNH) [13], the 
Princeton Ocean Model (POM) [4], and the 20 km Rapid Update Cycle (RUC) model running 
operationally at NCEP [1].  These models run, without code change on a most HPCs including 
IBM SP2, Cray T3E, SGI Origin, Fujitsu VPP, and Alpha Linux clusters.  Further, recent 
performance comparisons have demonstrated that the models parallelized using PPP runs as 
efficiently as their OpenMP and MPI counterparts. 
 
The rest of this paper will describe PPP in more detail.  Section 2 will describe PPP and highlight 
some advanced capabilities not available in other parallelization tools.  Section 3 briefly 
describes two applications parallelized using PPP and compares their performance to OpenMP 
and MPI versions of these codes.  Section 4 concludes and offers some insights and future 
directions of this approach. 
 
2.  Introduction to PPP 
 
PPP is a Fortran code analysis and translation tool that was built using the Eli compiler 
construction system [9].  Eli is a domain specific programming environment  that understands 
how to solve problems that are common to compiler development.  In contrast to commonly used 
to tools such as LEX and YACC which were designed to generate scanners and parsers from 
simple specifications, Eli was designed to generate the whole compiler, given a high level 
specification.   Specifications can be written that independently define the grammar, scanning, 
parsing, name and type analysis, symbol and definition table creation, language analysis, and the 
generation of the final output code.  Eli will then do the analysis necessary, including 
determining a tree traversal strategy necessary to satisfy the specifications and generate a 
complete compiler.  Eli builds the compiler either as a stand-alone executable or generates ANSI 
C code complete with makefile that can be ported to other systems.   
 
PPP executables are used to analyze the serial code and user-inserted directives to determine how 
the code should be modified.  Generated code relies on MPI based support libraries to perform 
operations including communications, parallel I/O, synchronization, local and global address 
space translation, and data layout.  This library layer currently provides support for applications 
using regular structured grids that are solved using finite difference approximation (FDA) or 
spectral methods.  Additionally, this library provides support for mesh refinement of nested 
models, and can transform data between grids that have been decomposed differently.  Finally, 
this middle software layer provides a way in which to incorporate architectural-based 
optimizations, and make upgrades in message passing software transparent to the user.  For 
example the upgrade of MPI from MPI-1 to MPI-2 requires only modifications to the 
communications layer and not to the application code.  PPP and the run-time library, in 
combination, represent a parallelization tool called the Scalable Modeling System (SMS). 
 



SMS has been designed to handle most aspects of parallel programming including data 
decomposition, reductions, handling of boundary conditions, static and dynamic memory, I/O, 
alignment, incremental parallelization, debugging and optimization operations.  Access to 
parallization is primarily through twenty directives that are inserted into the application code.  
Some of these directives are similar to HPF.  For example the DISTRIBUTE directive is used to 
identify the arrays that will be decomposed as it does in HPF$DISTRIBUTE.  The DISTRIBUTE 
directive also supports the HPF$ALIGN capabililty via a keyword option.   Many operations, 
such as I/O do not require any PPP directives; the translator simply determines how each array is 
decomposed and then generates the correct code. 
 
However, the user is required to define the decomposition (DECLARE_DECOMP and 
CREATE_DECOMP).  In addition, the type and placement of communications operations must 
be stated explicitly by the programmer.  Three types of communication are currently supported: 
HALO_UPDATE (communicate halo region data between neighboring processors), TRANSFER 
(handle communication required between arrays that are decomposed differently), and REDUCE 
(a global reduction operation).  To perform communication operations, the programmer simply 
specifies the arrays to be communicated and PPP will do the name and type analysis necessary to 
produce the correct translated code. 
 
PPP does not currently do inter-procedural analysis so additional directives are required to 
determine if variables must be converted between local and global address spaces using 
TO_GLOBAL, TO_LOCAL and GLOBAL_INDEX.  In addition, the PARALLEL directive is 
used to identify do-loops that require parallelization.  While these directives are currently 
required, additional analysis by the compiler could eliminate the need for them.  For example, 
PPP could determine parallel do-loop indices by identifying each decomposed array that is used 
within the loop and the indices used to reference them. 
 
Further details about these directives and support for the given operations can be found a papers 
by Govett, et al [8].  PPP directives also provide support for incremental code parallelization and 
debugging support.  This functionality is not provided by HPF or most parallelization tools and 
will be further described. 
 
2.1 Incremental Parallelization 
 
SMS provides support for simplifying code parallelization with a directive called SERIAL that 
permits serial execution of selected portions of the user's code.  This directive has several 
important uses.  First, it allows users to parallelize their code incrementally rather than being 
forced into an all-or-nothing approach.  Once assured of correct results, the user can remove 
these serial regions and further parallelize their code.  Second, this directive can be used to avoid 
the parallelization of some sections of code that are either executed infrequently (e.g. model 
initialization) or cannot be parallellized by PPP, such as NetCDF I/O [16]. 
 
Serial regions are implemented by gathering all decomposed arrays, executing the code segment 
on a single process, then scattering decomposed or broadcasting non-decomposed results back to 
each processor as illustrated in Figure 1.  In this figure, the routine not_parallel executes on a 



single process and references global arrays that have been gathered by the appropriate SMS 
routines.  While the extra communications required to do gather or scatter operations will slow 
performance, this directive's versatility has proven to be very useful during code parallelization. 

CSMS$SERIAL

“global” “local”

“local” “global”

CALL NOT_PARALLEL(...)

gather

scatter

broadcast
 

Figure 1:  An illustration of how SMS supports incremental parallelization.  Prior to execution of the serial region of 
code, decomposed arrays are gathered into global arrays, referenced by the serial section of code, and then results are 
scattered or broadcast back to the processors at the end of the serial region. 

  
2.2 Debugging 
 
Finding run-time bugs during the initial code parallelization or ensuing code maintenance phase 
can be the most difficult and time consuming task required in running codes on a DMC system.  
Two PPP directives have been developed to support debugging.  As illustrated in Figure 2, the 
COMPARE_VAR directive is used to verify interior region data points are correct, and 
CHECK_HALO is used similarly for the halo points.   

PPP Debugging Directives
Insert directives in the code to verify 

array values are correct

Interior Region

Halo Region

portion of a decomposed  array
owned by a single process

check_halo

compare_var

 
Figure 2:  An illustration of two debugging directives that are available to verify decomposed array values are 
correct.  Scalars and non-decomposed arrays can also be compared.  These directives have greatly simplified 
debugging and parallel code development. 



 
Using the CHECK_HALO directive, halo region values from each user-specified array are 
compared with their corresponding interior points on the neighboring process.  When data values 
differ, SMS outputs an error message containing the array name, and the location where the 
problem occurred, and then terminates execution. 
  
The COMPARE_VAR directive, patterned after work by O'Keefe [3], provides the ability to 
compare array or scalar values between a correctly working code and another run that uses 
different numbers of processors.  For example, the programmer can specify a comparison of the 
array "x", for a single processor run and for a multiple process run by inserting the directive: 
 

csms$compare_var ( x )
 
in the code and then entering appropriate command line arguments to request concurrent 
execution of the code.  Wherever COMPARE_VAR directives appear in the code, user-specified 
arrays will be compared as shown in Figure 3.  If differences are detected, SMS will display the 
name of the variable, the array location (e.g., the i, j, k index) and values from each run, the 
location in the code, and then terminate execution.  Conversely, if no differences are found, SMS 
will continue executing the code. 
 

CSMS$COMPARE_VAR
One Process Exec Four Process ExecSMS Runtime Environment

csms$compare_var(A,B)

csms$compare_var(C)

csms$compare_var(A,B)

csms$compare_var(C)

executable 

code

program main program main

executable 

code

executable 

code

executable 

code

end program end program

Compare C

Compare A,B

 
Figure 3:  An illustration of how COMPARE_VAR is implemented.  In this example, two executables are launched 
concurrently from the command line.  When a COMPARE_VAR directive is encountered, the executables 
synchronize, and then compare the specified arrays.  If any elements of the arrays differ, SMS will print the location 
and values of the data point and then terminate the execution of the runs. 
 
The ability to compare intermediate model values anywhere in the code has proven to be a 
powerful debugging tool during code parallelization.  For example, the time required to debug a 
recent code parallelization was reduced from an estimated eight weeks down to two simply 
because the programmer did not have to spend inordinate amounts of time determining where 



parallelization mistakes were made. 
 
These directives have also proven to be a useful way to ensure that model upgrades continue to 
produce the correct results.  For example, a scientist can verify source code changes by  simply 
comparing the output files of the serial “control” run and subsequent parallel runs.  In the event 
results differ, they can turn on SMS debugging (a run-time option) which compares the 
intermediate results of the arrays specified by COMPARE_VAR.  In the event differences 
appear, they can quickly locate the problem and determine the best solution.  In this way, SMS 
users have found the debugging directives very useful because they allow the code author to 
control the maintenance and upgrades of their parallel codes rather than requiring the help of a 
computer specialist. 
 
3.  Performance Comparisons 
 
As a high-level software tool, SMS requires extra computations to maintain data structures that 
encapsulate low-level MPI functionality which could lead to potential performance degradation.  
To measure this impact, a performance comparison was done between the hand-coded MPI based 
version of the Eta model running operationally at NCEP, and the same Eta model parallelized 
using SMS.  The MPI Eta model was considered a good candidate for fair comparison since it is 
an operational model used to produce daily weather forecasts for the U.S. National Weather 
Service and has been optimized for high performance on the IBM SP2.  Fewer than 200 
directives were added to the 19,000 line Eta model during SMS parallelization.  Performance 
results show SMS-Eta was faster than MPI-Eta for all processor counts tested as illustrated in 
Table 1.  Further analysis indicates that most of the performance gains in SMS-Eta were due to 
more efficient communications.  
 

Number of 
Processors 

MPI-Eta 
Time 

SMS-Eta 
Time 

SMS faster SMS-Eta 
Efficiency 

4 11197 10781  4 % 1.00 
8 5317 5258  1 % 1.03 
16 2878 2774  4 % 0.97 
32 1471 1446  2 % 0.93 
64 872 820  6 % 0.82 
88 694 643  7 % 0.76 

Table 1: Eta model performance for MPI-Eta and SMS-Eta run on NCEP’s IBM SP-2.  Run times are given in 
seconds for a full 48 hour model run including model initialization and the generation of hourly output files. 
 
Another model studied in recent tests, compared the performance of a OpenMP version of the 
Regional Ocean Modeling System (ROMS), and an SMS parallelized version of the same code.  
The ROMS model is a ocean model developed jointly by UCLA and Rutgers University that is 
used by modeling groups around the world.  One hundred-twenty directives were added to the 
13,000 line ROMS code during SMS parallelization.  This was equivalent to the number of 
OpenMP directives required.  The SMS and OpenMP performance results, shown in Table 2, are 



for model runs on an SGI Origin 3000.  Both one and two dimensional decompositions were 
used with the fastest run-times used in each case.  In general, the fastest SMS run times were 
observed when data were decomposed in two dimensions, since communications scale better; 
whereas OpenMP did better when a one dimensional decomposition was used.  In addition, the 
SMS one processor run was slower than the serial code because the SMS version used dynamic 
memory. 
 

Number of 
Processors 

OpenMP 
Time 

SMS 
Time 

SMS  
Efficiency 

% SMS 
Faster 

1 143.9 148.5 1.00 -3.1 
2 70.0 74.4 1.00 -5.9 
4 36.8 39.4 0.94 -6.5 
8 19.6 20.7 0.90 -5.6 
16 10.9 11.1 0.84 -1.8 
32 6.9 6.5 0.71 5.8 

Table 2:  A comparison of OpenMP and SMS runs of the ROMS model on the SGI Origin 3000.  The serial code 
ran in 144.7 seconds. 
 
Further details of these performance studies are provided in a paper by Govett, et al. [8]. 
 
4.  Conclusion 
 
We have demonstrated that directive-based code parallelization is a viable method in which to 
parallelize codes for distributed memory computers.  A compiler has been developed that 
provides simple high-level parallelization directives, requires no modifications to the original 
serial code, and demonstrates performance comparable to MPI or OpenMP.  This tool has been 
used to parallelize a number of weather and ocean code for use on a variety of shared and 
distributed memory computers.  The key to the success of this tool has been the code analysis and 
translation capabilities of PPP.  This tool was built using an advanced compiler building tool 
called Eli that simplified the development tasks. 
 
Further work remains to advance the analysis capabilities of PPP that will lead to fewer 
directives that must be inserted into the user code.  Recent tests have shown that up to 50 percent 
of the directives can be eliminated by more extensive code analysis.  Parallelization using PPP 
could become largely determining how and which arrays are decomposed, and the placement of 
communications in the serial code. 
 
We believe the success of this work demonstrates the usefulness of the approach.  While this tool 
has only been applied to weather and ocean models the approach is sufficiently general to be 
applied to other application areas.  We would like this development to serve as a prototype for a 
general purpose compiler that can bridge the gap between low-level yet high performance 
message passing libraries and high-level but sub-optimal performance programming models such 
as HPF.  
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